//
En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies pour disposer de contenus et services les plus adaptés à vos centres d'intérêts.

GALERIE ART PREMIER AFRICAIN GALERIE ART PRIMITIF AFRICAIN AFRICAN ART GALLERY

African Paris. Art premier primitif africain

Carbone 14


SELECT * FROM articles_traduction WHERE no_article=254 AND code_ISO_langue='fr'testtest2
test3 test4test6test7
Datation par le carbone 14

La datation par le carbone 14, dite également datation par le radiocarbone ou datation par comptage du carbone 14 résiduel, est une méthode de datation radiométrique basée sur la mesure de l'activité radiologique du carbone 14 (14C) contenu dans de la matière organique dont on souhaite connaître l'âge absolu, à savoir le temps écoulé depuis sa mort.

Le domaine d'utilisation de cette méthode correspond à des âges absolus de quelques centaines d'années jusqu'à environ 50 000 ans. L'application de cette méthode à des évènements anciens, tout particulièrement lorsque leur âge dépasse 6000 ans (préhistoriques), a permis de les dater beaucoup plus précisément qu'auparavant. Elle a ainsi apporté un progrès significatif en archéologie et en paléoanthropologie.

Historique

En 1960, Willard Frank Libby a reçu le prix Nobel de chimie pour le développement de cette méthode.
Willard Frank Libby (Grand Valley (Colorado), 17 décembre 1908 - Los Angeles, 8 septembre 1980) est un physicien et chimiste américain, célèbre pour son rôle dans le développement de la méthode de datation par le carbone 14, qui a révolutionné l'archéologie.

Biographie
Diplômé (Bachelor of Science) en chimie (1931) de l'université de Californie à Berkeley, Libby y soutint en 1933 une thèse de doctorat sur la « Radioactivité des lanthanides ». Il demeura dans cet établissement comme chargé de cours, puis comme maître assistant jusqu'en 1941.
Durant les années 1930, Libby fut le premier à construire un compteur Geiger-Müller aux États-Unis; il conçut d'autres appareils pour la mesure des faibles radioactivités, notamment le compteur à grille en 1934. Financé par une bourse de la Fondation Guggenheim, il travailla pendant la plus grande partie de l'année 1941 à l'université de Princeton.

Après l'entrée en guerre des États-Unis, il prit part au projet Manhattan. En août 1940, Libby intégra le groupe de Harold Clayton Urey (prix Nobel de chimie en 1934) à l'université de Columbia. Une des missions de ce groupe était la mise au point d'une technique d'enrichissement par diffusion gazeuse de l'uranium 235, qui servit à la fabrication de la bombe atomique lancée sur Hiroshima, et se heurtait à des problèmes persistants de barrière et de pompage. Il fallait trouver des matériaux compatibles avec le gaz très corrosif utilisé, l'hexafluorure d'uranium (UF6). Libby dirigea l'équipe chargée de ce problème de corrosion. L'étude chimique de l'hexafluorure d'uranium lui permit de découvrir les facteurs principaux de corrosion, ainsi que des matériaux suffisamment résistants pour permettre le passage au stade industriel. En 1945, il devint professeur à l'université de Chicago. En 1954, il fut nommé membre de la Commission à l'énergie atomique des États-Unis.
En 1959, il devint professeur de chimie à l'université de Californie à Berkeley, poste qu'il conserva jusqu'à sa retraite en 1976 ; jusqu'en 1963, il dispensa le cours de première année de chimie (traditionnellement réservé « à l'enseignant le plus ancien de l'université »).
En 1960, Libby reçut le prix Nobel de chimie pour avoir dirigé l'équipe (le chercheur post-doctoral James Arnold et l'étudiant Ernie Anderson) qui développa la méthode de datation par le carbone 14, très utilisée pour la datation d'objets en archéologie (jusqu'à 50 000 ans). Il découvrit également que le tritium permet la datation de l'eau et donc du vin.
En 1963, il épousa la physicienne Leona Woods Marshall.
Il fut directeur de l'Institut de géophysique et de physique planétaire (IGPP) de l'université de Californie pendant de nombreuses années. Il initia en 1972 le premier programme d'ingénierie environnementale à l'université de Californie à Los Angeles.

Histoire de la découverte de la datation par le carbone 14

Les années 1930 à Berkeley

Des ressources scientifiques et techniques nécessaires à la réalisation de la datation par le carbone 14 ont pour origine l'université de Californie à Berkeley. Dans les année 1930, la radiochimie et la radiobiologie connaissent un essor considérable autour du Radiation Laboratory, dirigé par Ernest Orlando Lawrence, et de son cyclotron qui rassemble des chercheurs de différentes disciplines.

C'est là qu'en 1930, Libby réalise le premier compteur Geiger-Müller construit aux États-Unis. En 1934, il met au point le compteur à grille pour mesurer de faibles radioactivités, technique qu'il utilisera lors des premières datations par le carbone 14 une décennie plus tard.

En 1940, Martin Kamen du Radiation Laboratory et Samuel Ruben du département de chimie de Berkeley (un ancien étudiant de Libby) découvrent le carbone 14 dont l'existence avait été suggérée dès 1934 par Franz Kurie. Cette découverte a lieu dans le cadre de leurs travaux sur l'usage de radioéléments comme traceurs biologiques (voir l'article carbone 14).

Un projet gardé secret (1939-1947)

Selon Libby, il aurait eu l'idée de la datation par le carbone 14 en 1939, en lisant un article de Serge A. Korff :

    « Dès que j'ai lu le papier de Korff, sur sa découverte de neutrons dans les rayons cosmiques, c'est la datation par le carbone ».

Dans cet article, S. A. Korff et W.E. Danforth décrivent comment ils ont envoyé dans la stratosphère un compteur à neutrons placé à bord d'un ballon. Cette expérience montre que le flux de neutrons augmente plus vite avec l'altitude que le total des radiations. Elle permet d'imaginer la production de carbone 14 naturel par réaction des neutrons lents et de l'azote atmosphérique (même si l'article ne fait pas mention de cette hypothèse).

Libby garde totalement secret son projet de datation par le carbone 14 jusqu'en 1946 et ne le révèle au grand public qu'en 1947.

En juin 1946, paraît une lettre de Libby dans Physical Review sur le tritium et le radiocarbone atmosphériques issus des rayons cosmiques. Libby prévoit une activité spécifique constante de la biosphère due à un rapport 14C/C total constant. Cette prédiction s'appuie sur la construction d’un modèle théorique de la distribution du radiocarbone naturel c'est-à-dire le modèle d'un système à trois réservoirs (l’atmosphère, les océans et la biosphère) dont les échanges s'équilibrent.

Dans cette lettre, il ne fait aucune allusion à la datation par le carbone 14.

En mai 1947, un article dans la revue Science décrit l'expérience mettant à l'épreuve le modèle théorique de la distribution du radiocarbone naturel construit par Libby. Il révèle au grand public après huit ans de silence le projet de datation par le carbone 14 en ces termes :

    « La découverte du carbone 14 produit par les rayons cosmiques a de nombreuses implications intéressantes dans les champs de la biologie, de la géologie et de la météorologie ; certaines d'entre elles sont en train d'être explorées, en particulier la détermination des âges de diverses matières carbonées dans le domaine compris entre 1000 et 30 000 ans ».

Travail expérimental et première datation (1945-1949)

En 1945, Libby est nommé professeur de radiochimie à l'université de Chicago qui abrite le tout nouvel Institute for Nuclear Studies. C’est le début de la phase de travail expérimental pour mettre au point la datation par le carbone 14. Dans le laboratoire de Libby, le 217 Jones Laboratory, deux jeunes chercheurs, Ernest C. Anderson et James R. Arnold, participent activement à ce travail qui comprend le test du modèle théorique d'une distribution uniforme et constante du radiocarbone naturel, le perfectionnement des techniques de mesure de faibles radioactivités et la détermination précise de la demi-vie du carbone 14.

En 1947, l’équipe de Libby, avec l’aide d'Aristid von Grosse, mesure l'activité spécifique de la matière organique contemporaine due au radiocarbone naturel (dans des échantillons de méthane issus des égouts de Baltimore). C’est le premier test expérimental du modèle théorique de la distribution du radiocarbone naturel.
En 1949, a lieu la première datation par le carbone 14 de deux échantillons de bois venus de tombes égyptiennes dont l'âge, bien établi par les archéologues, est d'environ 4600 ans.

Datation par le carbone 14 et archéologie

Le rôle d'intermédiaires entre la radiochimie et l'archéologie est joué par Urey, dont la notoriété dépasse les frontières disciplinaires, et Arnold, qui hérite de son père la passion de l'archéologie.

Les liens entre l'équipe de Libby et la communauté archéologique américaine ont pour conséquences les plus tangibles une bourse de 13 000 $ du Viking Fund for Anthropological Research et la création en 1948 du Comité sur le carbone 14, composé de trois archéologues et d'un géologue, qui se charge de sélectionner les échantillons archéologiques à dater par le carbone 14.

L'enthousiasme des archéologues en découvrant cette nouvelle méthode de datation montre la présence d'un besoin latent et donc d'un débouché potentiel. Mais pour que la datation par le carbone 14 devienne d'un usage courant, il faut d'abord développer une technique suffisamment économique.

Principe de la datation

Le carbone 14 ou radiocarbone est un isotope radioactif du carbone dont la période radioactive (ou demi-vie) est égale à 5734 ans selon des calculs relevant de la physique des particules datant de 1961. Cependant on continue par convention d'employer la valeur évaluée en 1951, de 5568 ans.

Un organisme vivant assimile le carbone sans distinction isotopique. Durant sa vie, la proportion de carbone 14 (14C) présent dans l'organisme par rapport au carbone total (12C, 13C et 14C) est la même que celle existant dans l'atmosphère du moment.

La datation par le carbone 14 se fonde ainsi sur la présence dans tout organisme de radiocarbone en infime proportion (de l'ordre de 10-12 pour le rapport 14C/C total). À partir de l'instant où un organisme meurt, la quantité de radiocarbone qu'il contient ainsi que son activité radiologique décroissent au cours du temps selon une loi exponentielle. Un échantillon de matière organique issu de cet organisme peut donc être daté en mesurant soit le rapport 14C/C total avec un spectromètre de masse, soit son activité X années après la mort de l'organisme.

Origine du radiocarbone naturel

Le radiocarbone naturel circule dans trois réservoirs : l'atmosphère, les océans et la biosphère.
Avec une période radioactive de 5730 ans, le radiocarbone aurait depuis longtemps disparu de la biosphère s’il n’était produit en permanence.
Dans la haute atmosphère, des réactions nucléaires initiées par le rayonnement cosmique produisent un flux de neutrons libres. Après avoir été ralentis par collision avec les molécules de l'air, les neutrons dans une certaine gamme d'énergie (cinétique) réagissent avec l'azote pour former du radiocarbone, selon l'équation bilan :

    ^{1}_{0}mathrm{n} + ^{14}_{7}!mathrm{N} rightarrow ^{14}_{6}!mathrm{C} + ^{1}_{1}!mathrm{p}

Cette réaction est privilégiée du fait que l’azote constitue 78,11 % de l’atmosphère de la Terre. C’est entre 7000 mètres et 12 000 mètres que la production de radiocarbone a principalement lieu.
L'atome de radiocarbone ainsi produit réagit rapidement avec l'oxygène pour former du dioxyde de carbone.
Ce gaz circule dans toute l'atmosphère et se dissout dans les océans pour former des carbonates. Du radiocarbone circule donc aussi dans les océans.
Le dioxyde de carbone réagit également avec la biosphère. Les plantes assimilent ainsi du radiocarbone dans l'atmosphère par photosynthèse et elles sont mangées par les animaux. Les organismes marins assimilent également le radiocarbone présent dans les océans. Le radiocarbone se répand donc dans la biosphère tout au long de la chaîne alimentaire.

Le rapport 14C/C total est considéré comme uniforme dans l'atmosphère, la surface des océans et la biosphère en raison des échanges permanents entre les organismes vivants et leur milieu.
De plus, on suppose que le flux de rayons cosmiques est constant sur une longue période de temps (première approximation). Par conséquent, le taux de production du radiocarbone est constant, donc le rapport 14C/C total dans l’atmosphère, la surface des océans et la biosphère est constant (le nombre d’atomes produits égale le nombre d’atomes qui se désintègrent).
À la mort d'un organisme, tout échange avec le milieu extérieur cesse mais le radiocarbone initialement présent reste "piégé" et sa quantité se met à décroître exponentiellement selon le processus de la décroissance radioactive : ceci permet de savoir depuis combien de temps l'organisme est mort.

Mesure de l’âge d’un échantillon de matière organique

La désintégration radioactive du carbone 14 obéit à une loi de décroissance exponentielle caractérisée par sa demi-vie. Dater un échantillon de matière organique consiste à mesurer le rapport 14C/C total (ce qui reste de radiocarbone naturel suite à la désintégration) et à en déduire son âge. Le rapport 14C/C total est mesuré soit indirectement par la mesure de l'activité spécifique (nombre de désintégrations par unité de temps et par unité de masse de carbone) due au radiocarbone naturel qui est proportionnelle au rapport 14C/C total, soit directement par spectrométrie de masse.

Quand elle fut mise au point par Libby à la fin des années 1940, la datation par le carbone 14 passait par la mesure de la radioactivité des échantillons ce qui était délicat du fait de la faiblesse du signal (il y a peu d’atomes de radiocarbone dans l’échantillon analysé, surtout après quelques milliers d’années, et encore moins qui se désintègrent) et du bruit de fond (radioactivité naturelle, rayons cosmiques...).

Aujourd’hui, la mesure directe du rapport 14C/C total par spectrométrie de masse est privilégiée car elle permet de dater des échantillons beaucoup plus petits (moins d’un milligramme contre plusieurs grammes de carbone auparavant) et beaucoup plus vite (en moins d’une heure contre plusieurs jours ou semaines). Le carbone extrait de l'échantillon est d'abord transformé en graphite, puis en ions qui sont accélérés par la tension générée par un spectromètre de masse couplé à un accélérateur de particules. Les différents isotopes du carbone sont séparés grâce à un aimant ce qui permet de compter les ions de carbone 14.

Les échantillons vieux de plus de 50 000 ans ne peuvent être datés au carbone 14, car le rapport 14C/C total est trop faible pour être mesuré par les techniques actuelles ; les résultats ne sont relativement précis que pour les âges inférieurs à 35 000 ans.

La méthode la plus courante de datation consiste à déterminer la concentration Ct de radiocarbone (c’est-à-dire le rapport 14C/C total) d'un échantillon à l'instant t de mesure ; l'âge de l'échantillon est alors donné par la formule :

    {t}-{{t}_0}=frac{1}{lambda}timeslnfrac{{C}_0}{{C}_{t}}

où C0 est la concentration de radiocarbone de l'échantillon à l'instant t0 de la mort de l'organisme d'où provient l'échantillon ({C}_0approx10^{-12} ) et ? la constante radioactive du carbone 14 (lambda=frac{ln2}{t_{frac{1}{2}}}approx1,210cdot10^{-4} mathrm{ans}^{-1}).

Période radioactive conventionnelle

L'âge carbone 14 conventionnel d'un échantillon de matière organique est calculé à partir d'une période conventionnelle de 5568 ans, calculée en 1950 à partir d’une série de mesures. Depuis, des mesures plus précises ont été réalisées, et donnent une période de 5730 ans, mais les laboratoires continuent à utiliser la valeur "conventionnelle" pour éviter les confusions.
Les résultats sont donnés en années « before present » (BP). Le point zéro (à partir duquel est mesuré le temps écoulé depuis la mort de l'organisme dont cette matière est issue) est fixé à 1950, en supposant un niveau de radiocarbone égal à celui de 1950 car depuis la pollution a grandement modifié le taux atmosphérique du dioxyde de carbone !

Courbes d'étalonnage

Au début des années 1960, certaines divergences systématiques observées entre l'âge d'échantillons estimé par la datation par le carbone 14 et par l'archéologie ou la dendrochronologie posent problème.
Même si le flux de rayons cosmiques à l'origine de la formation du carbone 14 peut être supposé constant, la recherche spatiale a mis en évidence que la quantité de ce flux reçu dans la haute atmosphère terrestre variait suite aux évolutions du champ magnétique terrestre et du champ magnétique solaire. Ceci explique que le taux de production du radiocarbone naturel ait varié au cours du temps.
Les changements climatiques ainsi que le rejet massif de carbone fossile dans l’atmosphère par l’industrie et les transports ont également modifié la quantité totale de carbone dans les trois réservoirs (atmosphère, océans et biosphère). Enfin, durant les années 1950 et 1960, on a pensé que les essais nucléaires étaient la cause du presque doublement de la quantité de radiocarbone dans l’atmosphère. Toutefois ces phénomènes récents n'ont pas d'impact sur la datation d'objets anciens, dont le rapport 14C/C ne dépend que de leur âge, et du taux 14C/C à la date de leur arrêt d'activité biologique.

En conclusion, le rapport 14C/C total dans la biosphère n'est pas constant dans le temps. Il est donc nécessaire de construire des courbes d'étalonnage en confrontant les datations obtenues grâce au carbone 14 et les datations par d’autres méthodes telles que la dendrochronologie.
Ces courbes permettent, connaissant "l'âge carbone 14 conventionnel" d’un échantillon, de trouver la date correspondante dans notre calendrier.

Autres corrections

Les véhicules équipés de moteurs à combustion interne utilisent des produits pétroliers qui ne contiennent que des isotopes stables du carbone, 12C et 13C ; la totalité du 14C ayant disparu au cours de la longue durée d'enfouissement des combustibles fossiles.
Ainsi, la datation par le 14C d'un arbuste poussant en bordure des autoroutes pourra fréquemment lui attribuer un "âge conventionnel" de douze mille ans ou plus.
Des tables de correction existent donc pour permettre des datations liées à la révolution industrielle, en fonction des lieux d'émissions de gaz carbonés dépourvus en carbone 14, issus de combustibles fossiles.

Limites de la datation par le carbone 14
La datation par le carbone 14 est une méthode très utilisée par les archéologues, mais son utilisation présente quelques limites :

    * l'élément que l'on veut dater doit avoir incorporé du carbone dans des proportions équivalentes à celles de l'atmosphère ; elle ne s'applique donc qu'aux matériaux organiques et pas du tout aux produits minéraux ;
    * la méthode s'appuie sur le principe d'actualisme et suppose que le rapport 14C/C est resté constant depuis la mort de l'élément à dater jusqu'à aujourd'hui ; ce n'est pas tout à fait le cas et des corrections sont donc nécessaires (cf. ci-dessus) ;
    * la fermeture du système de l'élément à dater est aussi indispensable ; s'il incorpore de nouveaux atomes de carbone après sa mort, le rapport 14C/C est bouleversé et le résultat ne sera pas fiable ;
    * la quantité de carbone radioactif diminue de moitié tous les 5 730 ans, qui est la valeur de la période de cet élément ; on ne peut donc dater que des éléments datant de moins de 50 000 ans au maximum (soit environ huit périodes) et les résultats sont relativement approximatifs au-delà de 35 000 ans ; pour des âges plus anciens, on utilisera alors d'autres méthodes comme la datation au potassium-argon ou la datation par le couple rubidium-strontium qui permettent de dater des roches ou la thermoluminescence, qui permet de dater des roches ou des sédiments qui ont été brûlés.




Recherche
Traductions du site
Menu
Lettre d'information
Liens
Publicités


Collection Armand Auxietre
Art primitif, Art premier, Art africain, African Art Gallery, Tribal Art Gallery
41 rue de Verneuil 75007 PARIS
Tél. Fax. : +33 (0)6 61 12 97 26
 
Conditions générales de vente Mentions légales  Plan du site  Contact      
Site créé avec CAMUXI - Version : 4.0037 - ©2025